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Abstract: The gyrotron travelling wave tube amplifiers (gyro-TWAs) presented in this paper can operate with high 
efficiency (30%), huge powers and wide bandwidths at high frequencies that no other amplifier can provide. In 
principle, this is a technology that can be scaled to >1 THz and operate with 20% bandwidths. Resonant coupling of 
two dispersive waveguide modes in a helically corrugated interaction region (HCIR) can give rise to a non-dispersive 
eigenwave over a wide frequency band. The synchronism between the ideal wave and an electron cyclotron mode, 
either fundamental or harmonic, of a large orbit electron beam contributes to the broadband amplification. An 
electron beam of 55 keV, 1.5 A with a velocity pitch angle of ~1 generated by a thermionic cusp gun is used in our 
100 GHz gyro-TWA experiment, which achieves an unsaturated output power of 3.4 kW and gain of 36–38 dB. The 
design and experimental results of the many components making the gyro-TWA will be presented individually and 
then the whole system will be introduced. The amplification of a swept signal by the W-band gyro-TWA is 
demonstrated showing its capabilities in the field of telecommunications. Furthermore, the design studies of a cusp 
electron gun in the triode configuration and the realization of a 3-fold HCIR operating at 372 GHz will also be 
displayed. 

Keywords: Gyro-TWA, Corrugated waveguide, Helically corrugated interaction region, Broadband amplification, 
Gyro-devices. 
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1. Introduction 

Generations of high-power sub-millimeter and terahertz (THz) radiation have drawn great 
interest in the last few decades due to their wide applications, such as communications, remote 
sensing, plasma heating, electron spin resonance, dynamic nuclear polarization-enhanced nuclear 
magnetic resonance, and others. As the operating wavelength moves towards the millimeter range, 
conventional microwave sources, such as travelling wave tubes and klystrons, become greatly 
limited by their power capability, due to a low current density, excessive heat load, small 
dimensions (especially in the interaction circuit) and the associated machining difficulties. Gyro-
devices are based on the cyclotron resonance maser (CRM) instability [1] and they have a fast 
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wave interaction. The electromagnetic field interacts with the transverse energy of the electron 
beam. By operating at higher modes, gyrotrons can generate radiation close to the THz range 
with larger dimensions when compared with the conventional microwave sources. 

The gyrotron traveling wave amplifier (gyro-TWA) is a part of the gyro-family. As an 
amplifier, it has many advantages in applications compared with gyro-oscillators. A higher-order 
mode operation brings many benefits such as a larger power capability, operation at discrete 
frequencies and higher interaction efficiency. However, mode competition is still a challenge that 
requires substantial effort to solve. Nevertheless, applications such as communications and radar 
can be greatly enhanced if broadband amplification can be achieved. The high-power broadband 
amplification is also very attractive for spectroscopy in the fields of bioscience and medical 
science.  

Gyro-devices with a smooth interaction waveguide have a hyperbolic dispersion curve. To 
achieve wide bandwidth amplification, the gyro-amplifiers must operate far from the cut-off as 
the group velocity has large variation near the cut-off and less far from the cut-off. However, the 
group velocity in the large axial wavenumber region is close to the speed of light. The gyrating 
electron beam is required to have large energy and a low spread in the transverse-to-axial velocity 
ratio (pitch alpha), which makes it unattractive to be used in the gyro-TWAs interaction circuit. A 
helically corrugated interaction region (HCIR) was proposed in 1998 [2], since then theoretical, 
numerical, and experimental studies were carried out to explore and validate its applications. The 
HCIR has very interesting features that it is able to couple any two modes in a circular waveguide 
to generate new eigenmodes. The details of the mode coupling can be referred to in the following 
section. The HCIR has been successfully used in gyrotron backward wave oscillators (gyro-
BWOs) [3, 4], gyro-TWAs [5-7], microwave pulse compressors [8-10], and as microwave 
undulators for free-electron lasers [11, 12].  

This paper summarizes the research work of high-power, broadband millimeter-wave and THz 
gyro-TWAs based on HCIRs conducted by the authors. There are gyro-TWAs with other 
interaction circuits that have been developed and have achieved great performance [13-16], 
whilst this paper concentrates on the gyro-TWA using the HCIR. At W-band the gyro-TWA 
achieved an unsaturated output power of 3.4 kW and a gain of 36-38 dB in the frequency range of 
90-96 GHz [7]. Further experiments demonstrated its potential application in communications [7]. 
A summary of the design of the individual components in the gyro-TWA is also presented in this 
paper. Besides the HCIR, another novelty of the design is the use of a large-orbit beam which 
was generated from a cusp electron gun. The large-orbit beam has the advantage of mode 
selection to reduce the mode competition, which allows the gyro-TWA to operate at the second 
harmonic of the cyclotron frequency, as required by the chosen interaction region. Therefore, this 
allows a reduction in the required magnetic field strength by a factor of 2. Currently, a THz gyro-
TWA has been developed and its progress is also introduced in the last section of this paper. 
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2. The w-band gyro-twa system and individual components 

In the past decades, gyro-TWAs using the HCIR in different frequency bands have been 
successfully developed, such as at X-band [5, 6], Ka-band [17, 18] and W-band [7, 19]. The 
schematic drawing of the W-band gyro-TWA is shown in Fig. 1. Critical components include the 
electron gun (2), magnetic coils (1, 6), input coupling system (3-4), elliptical polarizer (5), HCIR 
(7), output taper and an output launcher with microwave window (8). A diode with an annular 
electron emitter was used to form the electron beam which then propagated through a magnetic 
field cusp, just after the cathode, produced by a combination of two opposing magnetic fields 
initiating cyclotron motion around the longitudinal axis of the system. The magnetic system 
served to confine and transport the electron beam, as well as to provide the required magnetic 
field strength in the interaction region. The input coupling system enabled the low power 
millimeter-wave signal, generated by a solid-state source, to couple into the interaction region. 

 

Fig. 1 The schematic of the W-band gyro-TWA. 

The optimal performance of the gyro-TWA requires its individual components to meet strict 
metrics. The design of the cusp electron gun geometry is made to match the magnetic field profile 
to achieve the required alpha pitch with a minimum alpha spread. The input and output coupling 
systems must be designed with maximum transmission coefficients over the designed frequency 
band and minimal reflections to avoid parasitic oscillations. The input coupling system has the 
rectangular waveguide TE10 mode as its input, to match the output from the solid-state source, it 
is then converted to the circular TE11 mode before the entrance to the HCIR. To meet the 
requirements of many applications the output mode is desired to be a high purity Gaussian. 
Therefore, the output launcher, incorporating the microwave window, will also act as a mode 
converter to achieve the designed field profile. In the following sections, the design and 
measurement of each component are presented in detail. 
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(a) Helically corrugated interaction region  

The HCIR has an idealized dispersion characteristic that acts to improve the gyro-TWAs 
bandwidth and reduce the effect of electron beam velocity spread while maintaining a high 
interaction efficiency. It has a helical inner profile described by  

r(θ, z)=R0+R1cos(mBθ -2πz/d)                      (1) 

where R0 is the mean radius of the circular waveguide, R1 is the corrugation depth, mB is the fold 
number, and d is the axial period of the corrugation. Fig. 2 shows its inner surface. The azimuthal 
and axial periodicity allows coupling of two modes in the circular waveguide to generate new 
eigenwaves, as shown in Fig. 3.  

 
  Fig. 2 The inner surface of the helically corrugated interaction region 

One of the eigenwaves has nearly constant group velocity over a large range of frequencies and 
is suitable for the beam-wave interaction. By careful control of the dimensions of the HCIR, 
different “ideal” dispersions can be achieved for different frequencies ranges. For example, the 
gyro-TWA requires a nearly constant group velocity over a wide frequency range; the microwave 
compressor requires a swept group velocity over a wide frequency range; the microwave 
undulator requires a specific mode coupling at a certain frequency. 

 
  Fig. 3 The mode coupling in the HCIR 

To find the optimal dispersion curve that can achieve a broad bandwidth amplification, it is 
important to calculate the dispersion relation and the field distribution inside the HCIR accurately. 
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Different methods have been developed, including the 1D coupled wave theory based on the 
method of perturbation [20, 21], 2D finite-difference time-domain method (FDTD) / finite 
element method (FEM) eigensolver based on helicoidal coordinate transform [22], and the full 
3D FDTD transient solver, or FEM eigenmode solver [23]. The 1D coupled wave theory based 
on the method of perturbation is the simplest and fastest method to calculate the dispersion curves. 
It assumes that the change in the cross-section is small (R1 << R0) and can be treated as a first-
order derivative of a regular circular waveguide. When the corrugation depth is less than 15% of 
the mean waveguide radius, the coupled wave theory gives reasonably accurate results. Based on 
the perturbation theory, the small-signal gain equation can be derived to predict the performance 
of the gyro-TWA based on the HCIR. The HCIR can also be regarded as a type of twisted 
waveguide. A helicoidal coordinate transform can be used to convert the twisted waveguide into 
a straight uniform waveguide, thus downgrading the 3D problem into a 2D one, which can reduce 
the computing time by an order compared with the 3D method while maintaining high accuracy. 
Its drawback is that it is not straightforward to interpolate the 2D field pattern back to 3D due to 
the twisted coordinate system. The 3D simulations, either by a FDTD solver or a FEM 
eigensolver, require long simulation time and large computing resources, so they are suitable to 
verify the 1D and 2D simulation results. 

As an interaction region, the HCIR has the advantages of broadband amplification up to 20%. 
With the optimal design, the eigenwave at small axial wavenumbers has near-constant group 
velocity, which makes it less sensitive to the electron beam velocity spread. By using a 3-fold 
HCIR, its operating mode is coupled by TE21 and the spatial harmonic of TE11 mode. The major 
interaction mode is TE21, therefore, the second harmonic operation reduces the requirement of the 
magnetic field strength. For the W-band gyro-TWA, the simulated and measured dispersion 
curves are shown in Fig. 4. The small-signal gain was calculated using the normalized equation 
[5]  
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where α0 and βz0 are the beam initial alpha pitch and relative velocity in longitudinal direction 
respectively. fn and kzn are the normalized frequency and axial wavenumber. Δg and ΔH are the 
geometric mismatches of the HCIR and the normalized detuning between the operating 
eigenwave and the electron cyclotron mode. s is the harmonic number of the electron cyclotron 
mode. The calculated linear gain of the designed interaction circuit with an electron beam voltage 
of 55 kV and an alpha pitch value of 1.0 was about 40 dB over the frequency range of 90 -100 
GHz.  
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  Fig. 4 The dispersion curve of the W-band gyro-TWA 

 

(b) Cusp electron gun 

The electron beam source is determined by the interaction region used, in this case, a large-
orbit beam is required. 

This could be achieved through, for instance, a Piece-type beam traveling through a magnetic 
kicker. However, the cusp electron gun presents many benefits; an annual beam profile, 
controllable beam alpha and a mode selective beam quality. Initially, transport of an electron 
beam through opposing magnetic fields (the so-called “magnetic cusp”) was investigated in the 
1960s [24] for plasma-heating applications. Schmidt described the effects on electrons that 
passed through the cusp region, namely that they gained azimuthal rotation around the central 
axis of symmetry due to conservation of the electron canonical momentum[25, 26]. Building on 
this initial study cusp-based electron-beam sources started to be reported [27, 28]. Culminating in 
the “state-of-the-art” cusp electron gun in 2000 by Northrop Grumman [29] with a 70 kV, 3.5 A 
and 1.5 alpha electron beam with an axial velocity spread of 5% at a magnetic field of ~0.25 T. 
The first microwave source using a cusp electron gun was reported in 1983 using a magnetron 
[30]. Those earlier studies concentrated on a system with a cusp located after, or in, the anode 
region. However, the design in this gyro-TWA a smooth cusp just formed in front of the cathode. 
This provides some advantages, namely that the electron has not yet fully accelerated, and the 
required magnetic field which used to achieve a large orbit beam can be much small, so the 
velocity spread can also be therefore smaller. Since its inception cusp electron guns have gained 
popularity and have been used in many microwave and mm-wave sources, due to the attractive 
qualities such beams had, as discussed above. 

The particle-in-cell code MAGIC was used to simulate and optimize the trajectories of the 
cusp electron gun. Its basic geometry was derived from the Pierce-type gun. However, its design 
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is much more complicated compared with a Pierce gun. Although the approximated value of 
some key parameters, such as the radius of the emitter, magnetic field strengths at the cathode 
and the interaction region, can be derived from the analytical equations, it is hard to predict the 
trajectories in the compression region. So far, there is not a synthesis method available to achieve 
a simple design. At the same time, to achieve a small alpha spread, which is required for effective 
beam-wave interaction, the electric field between the cathode and anode needs to match with the 
magnetic field profile. Further researches have found that it is possible to decouple the design of 
the electric field and the magnetic field. There exists a range of magnetic field profiles, where an 
electric field distribution inside the electron gun can be designed and optimized to achieve 
optimal results. The design detail of the cusp electron gun can be referred to in papers [31-33]. 
Fig. 5 shows the optimal electron gun geometry as well as the beam trajectories.  

 
  Fig. 5 The simulated electron beam trajectories of the cusp electron gun. 

In the cusp electron gun experimental measurement, a double cable Blumlein which could 
output a ~380 ns, 40-60 kV pulse was used to drive the cusp gun. The beam quality was 
optimized in the beam voltage range which could be used to demonstrate the versatility of the 
gyro-TWA in operating at different parameter sets. The beam voltage was measured using a two-
stage voltage divider made from metal film resisters. The emitted current was measured with a 
Rogowski coil located in the earth line between the anode and the cable Blumlein and the beam 
current by a Faraday cup. The beam cross-sectional shape and dimensions were recorded by a 
phosphor scintillator plate and digital camera system after the Faraday cup was removed. The 
scintillator, a round transparent disk coated with a thin layer of phosphor, produces visible light 
when electrons impact on the surface. A thin titanium disk was placed before the scintillator to 
reduce the impact energy of the beam. The scintillator disk was located at 10.5 cm from the 
window (marked as position Z1) to match with the focal length of the camera, at this position the 
magnetic field tailed off to 90% of the cavity B-field. Typical traces of beam voltage and beam 
current are shown in Fig. 6 when operating at 40 kV. The emitted current from the cathode could 
be varied from 0 to 1.6 A by increasing the operating temperature of the cathode, at the applied 
beam voltage of 40 kV. Further increase in the temperature did not result in an increase in the 
beam current. This indicated that the operation of the cathode had become space-charge limited. 
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When the cavity B-field was 1.82 T, about 96% of this current reached the Faraday cup. A typical 
scintillator image, after the optical noise was removed, is shown in the inset of Fig. 5. The image 
shows clearly that an axis-encircling electron beam was generated. For this measurement, at a 
cavity B-field of 1.64 T, the annular beam was measured to have an average radius of ~0.37 mm. 
In the calculation, the corresponding alpha value was about 1.34 at the position of Z1. This 
corresponded to an alpha value of 1.56 at the entrance of the interaction region (marked as the 
position of Z2). 

 
  Fig. 6 The measured beam voltage and current. 

By adjusting the reverse coil current the magnetic field at the cathode and hence the value of 
the velocity ratio of the beam in the cavity could be controlled. At the cavity magnetic field 
strength of 1.64 T, the velocity ratio at position Z2 as a function of cathode B-field was measured 
and is shown in Fig. 7. For comparison of the simulated alpha at Z1 and Z2 as well as analytically 
calculated value at Z2 are also shown in the same figure. From the diagram, the measured alpha 
value had the same trend and a good agreement with both the numerical simulated and 
analytically calculated values. However investigation at higher alphas was limited by the 
capability of the existing power supply. 

 
  Fig. 7 The simulated and measured cusp gun results for the W-band gyro-TWA. 



Terahertz Science and Technology,  ISSN 1941-7411                                                                            Vol.13, No.3, September 2020 

98 

(c) Input coupling system 

The input coupling system not only separated the atmosphere from the ultra-high vacuum 
(UHV) inside the gyro-TWA but also ensured efficient mode coupling between the input modes 
from the TE10 mode in a rectangular waveguide to the TE11 mode in the circular waveguide. If 
the losses or reflection from the input coupling system is too high then there is a drop in the 
output power from the gyro-TWA requiring a higher power from the solid-state input source, 
which is either costly or may not be possible. Undesired oscillations may also occur if the 
reflection sufficiently large. 

The input coupling system consisted of a microwave window, a waveguide bend and a mode 
converter [34-37]. A pillbox window was used to seal the vacuum. It was convenient as it could 
connect to the solid-state source and directly use the rectangular TE10 mode as its input and 
output. Further advantages of the pillbox window included a relatively simple geometry, being 
able to be conveniently modeled through the mode-matching method, and a balanced 
performance between bandwidth and transmission. To improve the bandwidth performance, an 
impedance matching section was added between the rectangular waveguides. Also, the pillbox 
window mechanical structure was designed with a custom CF-like knife-edge on its UHV end for 
it to be demountable and able to be used in other applications. The measurement of the pillbox 
window showed it was able to hold a vacuum to the 10-9 mBar level while achieving a better than 
-15 dB reflection in the required frequency range of 90 -100 GHz, as shown in Fig. 8, more 
details on the design can be referred to in paper [38].   

The mode converter employed a single rectangular aperture to couple between the TE10 mode 
in the rectangular waveguide and TE11 mode in circular waveguide. The detail of the design can 
be referred to in [39]. Also to enhance the transmission coefficient, a broadband reflector was 
designed, optimized and placed at the side towards the electron gun [40]. 

Tab. 1 Ohmic loss of individual component 

Component Loss (dB) 

pillbox window 0.6 

waveguide bend 0.4 

elliptical polarizers 1 0.9 

HCIR 1.5 

waveguide taper 1.0 

elliptical polarizers 2 0.6 

circular-to-rectangular converter 0.3 



Terahertz Science and Technology,  ISSN 1941-7411                                                                            Vol.13, No.3, September 2020 

99 

 
Fig. 8 The simulated and measured results of the pillbox window. 

The measurement by a vector network analyzer (VNA) of the whole input coupling system 
connecting to the beam tube is shown in Fig. 9. A summary of the average loss from each 
component over the interested frequency range is listed in Table 1. The loss of the input coupling 
system can, therefore, be obtained. The transmission coefficient of the whole measured circuit is 
better than -6 dB over the interested frequency of 90-100 GHz, as shown in Fig. 10. The loss of 
the whole input coupling system is about -2.0 dB, which includes the loss from the pillbox 
window and the waveguide bends but excludes the loss of the HCIR and the elliptical polarizers.  

 
Fig. 9 The connection of the input coupler in the measurement. 
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Fig. 10 The measurement setup of the input coupler system at W-band. 

(d) Output coupling system 

The output coupling system consists of a mode converting horn and a microwave window. At 
the exit of the HCIR the waveguide mode is the TE11, so the mode converter is used to convert 
this to the Gaussian-like hybrid HE11 mode which is preferred by many applications. There are 
many choices for this type of mode converter. A corrugated horn was initially designed that 
achieved excellent conversion efficiency as well as low cross-polarization [41, 42]. However, the 
drawback of the corrugated horn was its use within the UHV environment. The corrugation vanes 
will trap a large volume of air, as well as increasing the surface area within the corrugated horn 
resulting in a much longer time to reduce the vacuum to the required level. A convenient method 
to solve this issue is to use a smoothly profiled horn [43]. This has the major advantage of being 
directly machined from solid copper and does not suffer the vacuum issues discussed above. 
However, this comes with the cost of a reduced Gaussian mode purity, lower gain and reduction 
in bandwidth.  

This configuration had two sections, a non-linear taper, and a linear phase-matching taper. The 
former taper was designed through an optimization routine with the goal of creating the 85% 
TE11 and 15% TM11 mode mixture of the HE11 mode. The later taper length was determined 
through the proper phasing of those modes at its aperture. The input diameter (3.6 mm) was pre-
determined by the output of the HCIR and the output diameter (25.12 mm) was set to be a few 
times the wavelength diameter so it was large enough for the beam to have a useful far-field 
profile and as well to assist in the design of the microwave window. Once manufactured the horn 
was connected to one port of a vector network analyzer (VNA) and allowed to radiate to free 
space and its reflection was measured, see Fig. 11(a), to be less than -35 dB. Afterward, its far-
field profile was measured through the VNA, see Fig. 11(b), and showed a good correlation with 
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the simulations. It was shown to have a directivity of 27 dB, side lobes lower than -30 dB with a 
cross-polar level of -25 dB.  

There are a few types of microwave windows that can be used to couple the microwave 
radiation out from the ultra-high-vacuum inside the gyro-TWA, for example, the Brewster type, 
single or multiple disk types, the pillbox type. The Brewster window was designed and measured 
[44], although it achieved low reflection (~-23 dB) and demonstrated a broad bandwidth, it 
requires an additional polarization converter after the HCIR to convert the circularly polarized 
output radiation into a linearly polarized one. The window would also be within a corrugated 
structure which is not preferable for the reasons already discussed.  

 
(a) 

 
(b) 

Fig. 11 The measurement of the smoothly profiled horn including a) its reflection when radiating into space with and 
without the microwave window and b) the setup of the input coupler system at W-band. 
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The multiple-layer window was chosen for this output system as it can have very low 
reflection and wide bandwidth [45, 46]. This configuration consists of different layers of 
dielectric materials, the more layers the wider the bandwidth but in practice, it is difficult to 
control those layer’s thickness so a trade-off is required. To cover the 10% bandwidth of the 
gyro-TWA a 5-layer window was suitable. In this case, the central disc was Alumina oxide, 
Al2O3, (97% pure) with relative dielectric constant (εr) of 9.4 was used. On each side of it was a 
small air gap then two thin Quartz discs, with εr of 3.75, were placed. The Alumina oxide disc 
was vacuum brazed into a Titanium holder, which itself had a CF knife edge feature, this held the 
vacuum to better than 10-9 mBar leak rate. The assembled window was placed at the end of a 
corrugated horn, which converted the input mode to the HE11 mode. As there were steps in the 
window assembly to control the separation distance between the Quartz discs and the central disc, 
they would cause unwanted reflections so the HE11 mode would centrally locate the wave, in 
order to mitigate this problem. The measurement of the window connected to one port of a vector 
network analyzer and radiating into free space can be seen in Fig. 12. It showed that over the 
desired frequency range less than -30 dB reflection was achieved, except in one small frequency 
range, as shown in Fig. 13. After the microwave window was measured and showed, it could 
achieve the desired reflection level/. It was then connected to the smoothly profiled horn, which 
had replaced the corrugated type as discussed. The measurement of this assembly of their 
combined reflection was found and had a lower than -30 dB reflection over the whole frequency 
range. The assembly was then connected to the gyro-TWA experiment, as shown in Fig. 14. 

 

Fig. 12 The smoothly profiled mode converter and microwave window. 
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Fig. 13 The measurement of the multilayer microwave window. 

 

3. Prototype and experimental results 

After the measurement of the individually designed components presented in the previous 
section, the W-band gyro-TWA was assembled and the experimental setup is shown in Fig. 14. 
The solid-state input source was able to generate a maximum power of 1.5 W over the frequency 
range of 90-96 GHz. Due to the attenuation of an isolator, a long standard waveguide, and the 
input coupler, the power that reached the interaction region was about 0.5 W. The electron beam 
energy was accelerated with 55 kV at a pulse length of 400 ns, generated by a cable pulser. The 
cusp magnetic field was generated by two water-cooled DC solenoids that were powered by 
opposite current directions. The maximum magnetic field strength that could be produced under 
the safe cooling temperature at the maximum driving current from the power supply was 2.1 T. 
The output power of the gyro-TWA was measured by a well-calibrated in-band power meter. The 
output signal after attenuation from propagating in free space was fed into a mixer with a local 
oscillator (LO) signal at 94.9 GHz. The intermediate frequency (IF) signal was directly captured 
by a fast digitizing oscilloscope. The measured signal of the beam voltage, beam current, detector 
signal, as well as the IF signal is shown in Fig. 15. 
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(a) 

 
(b) 

Fig. 14 The experimental setup (a) and the schematic (b) of the W-band gyro-TWA. 

 
Fig. 15 The measured beam voltage, beam current, detector signal, and the intermediate signal. 
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The bandwidth of the gyro-TWA in the measurement is 91-96.5 GHz with a maximum gain of 
38 dB at 94 GHz. The output power is about 3.4 kW. The amplifier was not yet saturated due to a 
limited input power of the solid-state source. More details on the experiment results can be 
referred to in paper [7]. 

The following experiments were carried out after the measurement of the characteristics of the 
gyro-TWA to evaluate its performance in communication applications. The signal generator, 
signal acquisition, and data processing package were all from Keysight Technology to provide a 
complete solution. For example, the arbitrary signal generator Keysight M8190A was used to 
generate different types of signals, such as a two-tone signal, frequency swept signal, etc. The 
signal analyzer Keysight PXA N9030A was used to measure the frequency spectrum from the 
output signal. Due to the lack of a CW high voltage power supply, the experiments could only 
operate at aburst mode. However, a good phase correlation between the broadband input and 
output signals, as shown in Fig. 16, was demonstrated. Fig. 16(a) shows the power level of the 
signal with and without the amplification. Fig. 16(c) is the real-time phase response of the output 
signal. Fig. 16(b) is the overlay of the frequency response of the input and output signals [47]. 
Although the noise from the pulsed power supply was evident in the measurement, the gyro-
TWA still demonstrated a good phase response. 

 
Fig. 16 Measurement of the frequency-swept amplification. 
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4. Further developments 

Two main research areas are being explored based on the success of the previous prototype. 
One is to operate the W-band gyro-TWA in CW mode, or with a high repetition rate, and the 
other is the development of gyro-TWAs at higher frequencies.  

Although in principle, the prototype is able to operate at a longer pulse length, the cooling 
requirement of the solenoids is one of the obstacles to achieving this. One of the solutions is to 
use a superconducting magnet to take the place of the conventional copper-wound solenoids. At 
the same time, fast switching of the electron beam by employing a modulation electrode is also 
proposed. Currently, a cusp electron with a modulation electrode has been optimized the match 
with a newly designed superconducting magnet. A comparison of the geometry of both the cusp 
electron gun with and without the modulation electrode is shown in Fig. 17. More detail of the 
design can be referred to in paper [48]. 

 
Fig. 17 The cusp electron gun without (a) and with (b) the modulation electrode. 

The interaction efficiency of the gyro-TWA is relatively low compared with the conventional 
TWT and klystron due to the axial energy that does not contribute to the beam-wave interaction. 
The thermal management becomes increasingly important when it is operating in CW mode. The 
calculation of the thermal distribution inside the interaction region due to the ohmic loss and the 
collector due to the spent electrons are required [49]. A depressed collector is a passive converter. 
It is able to transfer the kinetic energy of the spent electrons into potential electric energy. The 
overall efficiency is therefore increased and results in less thermal energy deposited on the 
collector. Based on the previous studies on the depressed collector for X-band gyro-BWO, the 
research on the depressed collector for the W-band gyro-TWA is carrying on [50, 51].  

When the frequency becomes higher, there is increasing difficulty in the manufacture as well 
as the control of the beam quality due to the smaller dimensions. A major challenge is to 
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overcome in the realization of the HCIR operating at a higher frequency, for example, a 3-fold at 
384 GHz was manufactured and tested. The details can be referred to in the paper [52]. Operating 
at higher-order modes are also proposed to allow the larger structure dimensions and reduce the 
requirement on the manufacturing. For example, coupled modes TE22 and TE31 as shown in Fig. 
18. when operating at TE31 mode, the radius of the five-fold helically corrugated waveguide can 
be 60% larger than a three one that operates at TE21 one, which makes the manufacturing much 
easier and better surface quality should be achieved [53].  

 
Fig. 18 The field pattern of the hybrid mode TE22 and TE31 in a five-fold HCIR and the TE31 mode in a circular 

waveguide. 

However, operating at higher-order mode makes the design of the input coupler and output 
windows more challenging, especially as the acceptable geometrical tolerance becomes 
increasingly tight. Studies on the individual terahertz components, including the multiple-branch 
terahertz coupler and multiple-layer terahertz window, have been carried out to evaluate their 
performance and determine the tolerance requirements. The details can be referred to in papers 
[52, 54, 55]. 

 

5. Conclusion 

This paper summaries the research work of high-power, broadband millimeter and terahertz 
wave gyro-TWAs in Strathclyde University. A W-band gyro-TWA has achieved an unsaturated 
output power of 3.4 kW and a gain of 36-38 dB in the frequency range of 90-96 GHz. A further 
experiment has demonstrated its potential application in communication. A summary of the 
design of each component is also presented in this paper. The current on-going following-on 
researches are also introduced in this paper. 
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