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Abstract: A novel physical mechanism for development of Terahertz amplifier with plannar structure is presented
in this paper. The theoretical analysis study and numerical calculations have been carried out, the significant results
show that 12.69 dB per 1 mm length can be obtained. In principle, the mechanism is quite similar to that of space

charge theory.
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l. Introduction

Although the generation of Terahertz (THz) has been successfully developed by using
graphene Surface Plasmon Polaritons excited by electron beam [1-4 ], the THz amplification is
still a big challenge till now. A novel physical mechanism is presented to solve this problem by
using graphene SPPs excitation. The theoretical study shows that when the velocity of the
electron beam is a little bit higher than the phase velocity of SPPs waves, the energy of electron
can be transformed to SPPs wave to amplify them. In principle, this is similar to space charge
wave theory which used in traveling wave device for a long time [5-9 ].
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I1. Theoretical formula

I Vacuum y

III Vacuum

Fig. 1 Planar Schematic

Solving the homogeneous Helmholtz equation together with the boundary conditions, the E,
component of the fields in region I and Il can be obtained. And then all the other field

components can be obtained by Maxwell’s equations. The factor e ' is neglected.

In the region I:
Ezl - A-e_kl(y_yo_h)ejkzz (1)
H =- jak)go Ae kMgl (2)
1
Where:
k=G +K?
In the region 1I:
Ez” — [Aze—kz(y—y o)y Ase" ¥y B ]éjkzz (3)
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2
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2

w e J
Where K, = Ja(kZ+KD), @=1-——r _ 2 —PC , <
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In the region I11:
EZ||| :[A46—k3y +A§ek3(y—y0)]ejkzz (5)
me __ ji)go [AAG—kay _ Aseks(y—yo)]ejkzl (6)
3

In the region IV:

EZ|V — ASeKAYejkzz (7)
H)iV — Ja)if‘og‘l '%ekzlyejkzz (8)
4

Where: k, = &,k +K2

The monolayer graphene is also considered as a conductive surface with conductivity o,

[10, 11]

jie’k.T
_ ”hzl(wfj /T){k“cT +2In[exp(—, / k,T)+1]} (9)
g B

Oy

J isthe imaginary unit, T is temperature, k, is Boltzmann constant, z is relaxation time,

and g, is chemical potential.

The boundary conditions can be written as
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E!=E, H'-H/ =0
E'=E" HM"-H!"=0 (10)

EZIV — EIII H):V _ H):“ :O_glEZIII

z H

Submitting the electromagnetic fields into the above boundary conditions, the dispersion
relation can be obtained:

1,6 _ %
k3 k4 ja)go gkaYo :ﬂe‘kﬂo (1D
1 &, 9 1+M,
k, k, Jos,
—koh
Where l\/ll:ﬁe*kzh’ Mz=§(1M—1e_kh)
k2.|.k1 k2 1+M1e 2
I11. Results

The permittivity of dielectric substrate is &,=2.1. For the grapheme sheet, T =300K,

r=1.2ps, and chemical potential 2, =0.2eV . The current density of electron beam is 200A/cm?,

and its velocity is 0.1c. At the frequency 4.506 THz, the wavevector of graphene SPPs is
k, =9.42537 x10° —i1460.8rad/m . The theoretical value of gain is:

G = 20log{exp[Im(k,L)]}

=8.686 Im(k,L) (12)

If the interaction length is 1mm, the gain can reach 12.69 dB.
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Fig. 2 The dispersion curve

In the case of no electron beams, k, =943069 x10° + 27266.74i rad/m, n=9.983. The Contour

map of SPPs wave propagation are given in Figure 3.
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Fig. 3 Contour map of SPPs wave propagation
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Fig. 4 The Gain vs Frequency
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Fig. 5 The Gain vs current density
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IV. Conclusions

Theoretical study and numerical calculation have been carried out for THz amplification by
means of graphene SPPs excited by electron beam. The results show that when the velocity of the
electron beam is slightly faster than the phase velocity of the graphene SPPs, the energy of
electron beam can be transformed to SPPs wave to amplify them. In principle, the mechanism is
quite similar to the space charge wave theory which has been used for traveling wave amplifier
devices for a long time.

The results obtained in this Manuscript, 12.69 dB for 1 mm length is significant and attractive,
comparing with the papers appeared in references [12-16].
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