THz modulation performance of VO₂ film grown on Al₂O₃/Si substrate

Ying Xiong ¹, Qi-Ye Wen ^{1*}, Zhi Chen ², Qing-Hui Yang ¹, Huai-wu Zhang ¹
¹ State Key Laboratory of Electronic Films and Integrated Devices,
University of Electronic Science and Technology of China, Chengdu, 610054, China
² National Key Laboratory of Science and Technology of Communication.
University of Electronic Science and Technology of China, Chengdu, 610054, China
^{*1} Email: qywen@uestc.edu.cn

(Received May 31, 2014)

Abstract: High quality VO₂ thin film was successfully deposited on Si substrate with Al_2O_3 as a buffer layer. The electrical and optical performance of the film was great enhanced. Reflective terahertz modulation is characterized and the modulation amplitude of 55% is obtained. The VO₂-on-Si buffered by Al_2O_3 can be widely used for THz devices.

Keywords: VO₂ thin film, Terhertz, Modulation.

doi: 10.11906/TST.150-153.2014.09.13

1. Introduction

The metal-insulator transition (MIT) of VO₂ thin film leads to great changes in its electrical and optical properties, such as the electrical resistivity, reflectivity and transmissivity [1-3]. Based on its abrupt changing of performance, the VO₂ films were widely applied within the terahertz frequencies, especially to the temperature control modulator [4, 5]. But the preparation of VO₂ films with excellent phase transition properties is a basic foundation for real applications. In the work presented here, Al₂O₃ buffer layer was used to enable integration of VO₂ thin films with Si (001) substrates. Giant phase transition properties were observed in the VO₂ film in terahertz range.

2. Experiments

The VO₂ films were prepared by RF magnetron reactive sputtering using Al_2O_3 as an intermediate buffer layer, which was grown by atomic layer deposition technology. After deposition, the microstructures, electrical properties and optical performances of the thin film were systemically studied.

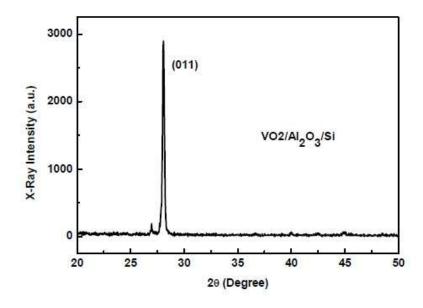
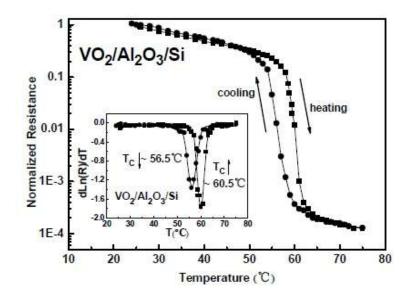



Fig. 1 The XRD pattern of VO2 thin film on Si substrate buffered by Al₂O₃.

Figure 1 shows the XRD pattern of the film. We can see a dominant peak at $2\theta = 28$, which refers to (011) planes of monoclinic phase of VO₂ films. The preferred orientation (011) is so obvious that it fades the other orientation away. It shows that the VO₂ on Si substrate buffered by Al₂O₃ is significantly textured.

The VO₂ films we prepared here were observed with nearly four orders of magnitude resistance change in thermal-MIT, as shown in figure 2. It indicates a quite high quality of VO₂ films consistent well with the XRD results. The MIT temperature T_C of the VO₂-on-Si buffered by Al₂O₃ is determined to be 60.5 C and 56.5 C during the temperature ramping up and down, respectively.

We display reflection spectra for our sample in the frequency range of 0.4-1.6 *THz* with temperature changing from 25 C to 80 C. Variations of the THz reflection with frequencies are illustrated in Figs. 3.

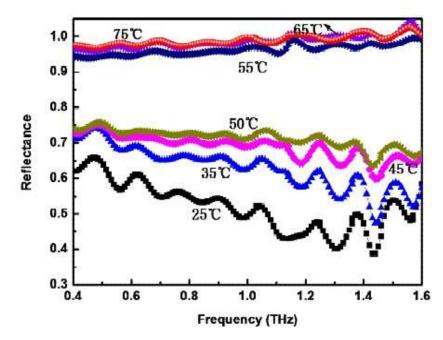


Fig. 3 Variations of the reflection with frequencies.

We set the reflection at 80 $\,^{\circ}C$ as 100%, then a series of relative reflection is obtained. As the temperature ramping down, the VO₂ film switches toward to its insulation phase, then we observed the significant modifications to the THz signal. A bit higher reflection was produced due to the heavily doped silicon substrate. As an active THz device, a large modification amplitude over 55% was obtained here. Moreover, the modulation rate can be achieved as high as 2%/ $^{\circ}C$, when the temperature changes from 50 $^{\circ}C$ to 55 $^{\circ}C$.

In summary, the VO₂ thin film deposited on Si substrate buffered by Al₂O₃ shows perfect crystallinity and an orientational crystallization of (011). Dramatic change in electrical resistivity ($\ddot{A}R=10^4 Ohm/\Box$) was observed. THz reflection modulation was characterized by terahertz time domain spectrum, and the results demonstrate that the VO₂ film with the modification amplitude of 55% can be widely applied to THz switching devices.

Acknowledgements

Supported by National Nature Science Foundation of China (No. 61131005), Keygrant Project of Chinese Ministry of Education (No. 313013), the "New Century Excellent Talent Foundation"

(No. NCET-11-0068), Sichuan Youth S & T foundation (No. 2011JQ0001), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110185130002).

References

- [1] C. H. Griffiths and H. K. Eastwood. "Influence of stoichiometry on the metal semiconductor transition in vanadium dioxide". *Journal of Applied Physics*, 45, 5, 2201-2206 (1974).
- [2] C. Ba, S. T. Bah, M. D' Auteuil, et. al.. "Fabrication of high-quality VO2 thin films by ion-assisted dual ac magnetron sputtering". *ACS Appl. Mater. Interfaces*, 5, 23, 12520-12525 (2013).
- [3] G. Seo, B.-J. Kim, C. Ko, et. al.. "Voltage-pulseinduced switching dynamics in VO2 thin-film devices on silicon". *IEEE Electron Device Letters*, 32, 11, 1582-1584 (2011).
- [4] M. Seo, J. Kyoung, H. Park, et. al.. "Active terahertz nanoantennas based on VO2 phase transition". *Nano Lett.*, 10, 6, 2064-2068 (2010).
- [5] Q. Y. Wen, H. W. Zhang, Q. H. Yang, et. al.. "A tunable hybrid metamaterial absorber based on vanadium oxide films". *J. Phys. D: Appl. Phys.*, 45, 23, 235106 (2012).