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Abstract: Several new configurations of self-exciting gyro-multipliers are proposed. These schemes allow 
concurrent excitation of radiation at fundamental and harmonic frequencies in a single resonator. It is shown that 
such an approach simplifies the experimental setup and promises high device efficiency. Experimental proposals 
based on some of the schemes are presented. 
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1. Introduction 

Cyclotron resonance masers (CRMs, see e.g. [1-5]) have proved to be efficient and 
powerful sources of coherent electromagnetic radiation in the centimeter, millimeter, and 
sub-millimeter wavelength ranges. The most widespread and perfect types of CRMs are 
gyrotrons and gyroklystrons, operating at low (fundamental and second) cyclotron harmonics. 
For instance, fundamental-harmonic millimeter-wavelength gyrotrons with weakly relativistic 
electron beams produce huge power of up to 1 MW in the continuous wave (CW) regime with 
high efficiency (see e.g. [5]). Powerful gyrotrons have been successfully realized also in a 
number of sub-millimeter experiments [6-10] including the pulsed oscillator which recently 
achieved a wavelength of 0.3 mm [10]. However, the necessity to use very strong magnetic 
fields in this very promising part of electromagnetic spectrum (over 35 T at the wavelength of 
0.3 mm, when operating at the fundamental harmonic) essentially makes such sources 
impractical for many potential users.  To reduce the required magnetic field an alternative 
approach uses a Doppler upshift to reduce the required magnetic field, as in the cyclotron 
autoresonance maser (CARM). This approach has been successful [11,12] but has the 
disadvantage of requiring less convenient, significantly higher energy, high quality electron 
beams. 

The magnetic field in a gyrotron can certainly be significantly diminished if operation at a 
high (n>2) cyclotron harmonic is used, but it is very difficult to achieve this in traditional 
gyrotrons with tubular weakly/moderately relativistic electron beams because of the dramatic 
weakening of the electron-wave coupling [1,2] and parasitic mode excitation at low 
harmonics. A significantly more efficient and selective interaction at high harmonics can be 
provided in the so-called Large Orbit Gyrotrons (LOGs, [13-17]) and in gyromultipliers 
[18-25].   

In LOGs, selective operation at the 3rd-5th harmonics has already been demonstrated at 
short wavelengths and a minimum wavelength of 0.7 mm has been achieved due to using 
axis-encircling electron beams [13-17]. In gyromultipliers, a relatively low-frequency (LF) 
signal provides electron modulation and bunching at the frequency of the operating wave and 
also simultaneously at its harmonics, which occurs due to the nonlinear properties of the 

 169

doi: 10.11906/TST.169-189.2008.09.15

http://www.tstnetwork.org/10.11906/TST.169-189.2008.09.15


Terahertz Science and Technology,  ISSN 1941-7411                                 Vol.1, No 3, September 2008                

electron beam. Because of this preferential frequency imposed on the electron beam, 
high-frequency (HF) radiation at a high cyclotron harmonic can be selectively excited [18-25]. 
The most selective and efficient frequency multiplication can be obtained if, like in LOGs, 
one uses axis-encircling electron beams. It is important that for self-exciting multipliers only 
the starting current for the LF harmonic should be exceeded and the operating current can be 
significantly smaller than for high-harmonic gyrotrons, for which the problem of the starting 
current is rather severe. Certainly, at smaller currents the HF power from gyromultipliers will 
be lower than from high-harmonic gyrotrons, but it is nevertheless quite sufficient for most 
applications, and the advantages of the formation of low-current beams may often 
overbalance this lack of power.  

The LF wave in a gyromultipler may either be induced internally or injected externally. A 
self-exciting gyro-multiplier, which needs no external RF source, can be often more attractive 
at short wavelengths. In such a device, the electron beam excites both (LF and HF) waves. In 
Sect. II of this paper, two possibilities for the realization of self-exciting gyro-multipliers are 
compared: a two-cavity scheme with self-exciting LF cavity and a scheme of combining both 
the LF and HF oscillators in a single cavity. In Sections III and IV, variants of single-cavity 
two-wave gyro-oscillators with uniform and non-uniform magnetic fields are studied. 

2. Two-cavity scheme of gyro-multiplier 

The most evident variant of the gyro-multiplier is a two-cavity klystron-like scheme with 
an external LF source (Fig. 1) [18-25]. In the first section, the electron beam is in resonance 
with the low-frequency wave at the fundamental cyclotron harmonic:  

ω
LF 
≈Ω+ h

LF
v

||                                                           
 (1) 

The second resonator is adjusted to the resonance with the HF wave at the n-th cyclotron 
harmonic: 

ω
HF 
≈ nΩ+ h

HF
v

||
                                (2) 

 
 

Fig. 1 Schematic of a two-cavity gyromultiplier with an external low-frequency RF signal. 
 
 

Here ω
LF 

and ω
HF

 are the frequencies of the LF and HF waves, h
LF

 and h
HF

 are their 

longitudinal wavenumbers, v
||
 is the axial electron velocity, and Ω=eB /mcγ is the electron 

gyro-frequency with the relativistic Lorentz factor  2
1 1 v c    . In the first cavity the 

electron beam is modulated by the LF wave at its frequency, ωLF . In the drift region between 
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the cavities the modulation leads to creation of electron-current components at all harmonics 
of this frequency. In the second cavity the bunched beam can excite the HF wave at the n-th 
cyclotron harmonic, if the cyclotron harmonic number coincides with the number of the 
electron-current harmonic:   

ωHF =nωLF                                                           (3) 

In the case of a uniform magnetic field, conditions (1-3) automatically make the divisibility 
of the longitudinal wavenumbers necessary, 

h
HF 
≈nh

LF 
                                      (4) 

For example, if the gyrotron-type ( hLF <<ωLF / c ) resonance is provided in the first cavity, 
the same type of resonance should be provided in the second cavity.   

Certain selectivity rules for the transverse spatial structure of the HF wave exist as well, but 
they depend on specific geometries of both the cavity and the electron beam. In particular, in 
the case of the most convenient cavities with circular transverse cross-sections, the ratio 
between the azimuthal indices of the HF and LF modes should be equal to the frequency 
multiplication number, mHF = nmLF . Especially strong mode selectivity takes place for an 
axis-encircling electron beam used in LOGs, when the transverse motion of all the electrons 
corresponds to gyrating around the axis of the circular cavity. In this case, both (HF and LF) 
modes can be excited only at cyclotron harmonics coinciding with azimuthal indices of the 
modes [2,13-17].  

A simple analysis of the described scheme (Fig.1) can be carried out by the means of a 
general theory of RF devices based on inertial electron bunching. For this situation, electron 
motion in the field of a wave [26] is described by the well-known asymptotic equations: 

0Im( ), , (0) 0, (0)idw d
ae vw w

dz dz
                   (5) 

which are applicable if the relative change in electron energy, w, under the influence of the RF 
field is sufficiently small. Here θ is the relative phase between the electron and the wave 
which can be an arbitrary value, ∆ is the resonance mismatch, κ and ν are the factors of 
electron-wave coupling and inertial bunching, respectively, a is the normalized complex 
amplitude of the RF field, and z is the normalized longitudinal coordinate. For an unbunched 
electron beam entering the first resonator, the initial phases of particles, θ0, are distributed 
uniformly over the interval [0,2π).  

The degree of bunching at the n-th harmonic of the LF wave frequency is described by the 
normalized density of the RF electron current,   

in
n e                                 (6) 

where <...>  denotes averaging over the whole ensemble of particles. Using the 
approximation of a short input cavity, a(z) =a0δ(z)L0  (here L0 is the length of the first cavity 
and δ(z) is the delta-function), one obtains the following solution for the electron energy and 
the phase in the drift region between the cavities: 
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yields the following expression for ρn:  

0 0( ),n nJ nz v a L                                 (8) 

where Jn is the Bessel function of the n-th order and χ is the klystron bunching parameter. The 
dependence of current harmonics on the coordinate is shown in Fig. 2. It is important that 
higher harmonics reach saturation earlier than the lower harmonics. 

 

Fig. 2 Axial distribution of harmonics of the electron current in a klystron. 

In the second cavity, the existence of the current harmonic ρn results in radiation at the n-th 
harmonic of the modulating frequency. In principle, if the amplitude of the operating wave 
inside the cavity is close to its optimal value, then the efficiency of radiation at any harmonic 
can be rather high. The maximum of the orbital efficiency, η⊥, which is the averaged part of 
the transverse electron energy spent in radiation, varies from 60% for n =2 to 20% for n =5 
[19]. However, in the case of a high number of the operating cyclotron harmonic, it is quite 
problematic to provide the optimal RF-wave amplitude. Actually, the electron-wave coupling 
factor, κ, decreases fast with the increase of the cyclotron harmonic number. Correspondingly, 
the optimal value of the RF amplitude increases, a ∝1/ κ. Thus, in order to provide the 
optimal conditions of the electron-wave interaction, one should provide a high enough value 
of either the electron current, or the Q-factor of the operating cavity. However, the latter is 
strictly limited by the Ohmic Q-factor of the cavity. Thus, at moderate values of the electron 
current, the RF amplitude proves to be significantly smaller than the optimal value, and this 
fact leads to relatively low electron efficiencies.  

Let us illustrate this fact by the following estimates. In the case of the axis-encircling 
electron beam, the interaction efficiency is determined by the normalized current parameter 
[19] 
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where I is the electron current, L2 and Q2 are the length and the Q-factor of the second cavity, 
 is the norm of the HF mode (here ν is the p–th zero of the 

derivative of the Bessel function, Jn ′(νn,p) =0), λHF is the HF wavelength, β⊥,|| =v⊥,|| / c  are 
the transverse and longitudinal electron velocities normalized to the speed of light. For 
achieving efficient radiation, one should provide quite a large value of the normalized current 

parameter,  (actually, it corresponds to the electron current close to the starting 
current for the second cavity).   

2 2 2
2 , ,( ) ( )n p n n pN v n J v 

ˆ 0.1I 

/ 2

Let us assume that the quality of the operating mode is equal to the minimum diffraction 

Q-factor, 
2

28
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 and find the optimal electron current for interaction at the fifth 

cyclotron harmonic in the case of a typical gyrotron beam of voltage 60 kV and pitch-angle 
/ 1   : 
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
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Thus, if the length of the cavity amounts to several wavelengths, then too high electron 
currents of the kA level are required to provide the optimal electron-wave interaction. If the 
electron current is significantly lower (for example, a few amperes), then in the low-current 
approximation the orbital electronic efficiency is described by the formula 
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It means that with the same assumptions about the beam parameters the orbital efficiency is 
determined by the expression 
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In the case of an electron current of the order of 1A this value is as small as 0.3%. 
Gyromultiplier efficiency can also be noticeably reduced due to Ohmic losses, inhomogeneity 
of the HF current ρn inside the cavity, the use of a high transverse HF mode with a large norm, 
and so on. Thus, the expected efficiency of any gyromultiplier should be compared with the 
rather low estimate given by (11). 

In principle, the klystron-like scheme can be used as a self-exciting gyro-multiplier, which 
requires no external source of the LF signal; in this case, the first cavity represents a 
self-exciting LF auto-oscillator of a certain type, e.g. gyrotron, gyro-BWO or resonant 
gyro-TWT. Let us consider a gyro-BWO as the simplest example of the first LF oscillator 
(Fig. 3) which is characterized by a minimal number of parameters and in addition allows a 
frequency tuning. In this case, the first LF oscillator is described by the system of equations 
(5), supplemented with the equation for the complex amplitude of the opposite (backward) 
wave (these equations coincide with the ones for a Cherenkov BWO [27]): 
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 1 0,
da

iG a L
dz

 0                           (13) 

where G is the factor of wave excitation proportional to the beam current. It is assumed that 
the electron beam enters the cavity at z = 0. Having introduced the normalization to the Pierce 

parameter 3C v G  

ˆˆ , /z Cz w wv C  , ˆˆ / , /a aC G C                     (14) 

one transforms Eqs. (5) and (13) to the following form: 

1

ˆ ˆˆˆ ˆIm( ), ,
ˆ ˆ ˆ

idw d da
ae w i

dz dz dz
                           （15） 

with boundary conditions 

0ˆ ˆ ˆ( 0) 0, ( 0)w z z ,       ˆˆ ˆ(a z L)                    （16） 

Thus, the regime of BWO operation is determined by only one parameter, the normalized 

length of the generator, 3
0L̂ L I . The oscillator is excited if the length exceeds the starting 

limit, . Simulations show, that if the normalized length, L
ˆ
, is not too close to the 

starting value, 

ˆ 1.98stL 
ˆ

stL , then the first harmonic of the electron current reaches a maximum inside 

the LF oscillator, (Fig.3). As for higher harmonics, their behavior is very similar to the 
case of the klystron model, i.e. they become saturated earlier than the first harmonic. 

ˆẑ L

 

Fig. 3 Schematic of a two-cavity gyro-multiplier with a self-exciting LF section (gyro-BWO with the normalized 

length ), and axial distribution of harmonics of the electron current.  ˆ 2.2L 

Such a situation is quite typical for all types of auto-oscillators based on inertial electron 
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bunching, and it complicates the realization of the two-cavity scheme of the gyro-multiplier 
with a self-exciting LF section. Indeed, the HF generator is placed after the LF generator, i.e. 
in a region where the desired high harmonic electron current is small due to over-bunching, 
whereas the optimal place for the HF cavity should be somewhere in the middle of the LF 
cavity. The optimal place for the HF generation can be removed out of the LF generator, if the 
LF generator operates in a regime close to the small-signal one (when the electron current is 
close to the starting value). However, such a regime is quite difficult in the experimental 
realization for pulse operation.  

One should notice that the use of a fixed frequency LF oscillator (like a gyrotron) leads to 
the serious additional problem of frequency synchronization between the two (LF and HF) 
oscillators. In other words, eigenfrequencies of these two oscillators must be divisible, 

HF n LF  , with quite a high level of accuracy, 

1 1
,LF HF

LF LF

n

n Q Q

 



 
HF

                        （17） 

where QLF, HF are the Q-factors of cavities of LF and HF oscillators. This problem is even 
more complicated by the fact that the condition of frequency synchronization should be 
provided for the “hot” eigenfrequencies, so that the impact of the electron beam on the 
resonant eigenfrequencies of both oscillators must be taken into account. 

3. Single-cavity homogeneous schemes 

3.1 “Gyrotron-gyrotron” two-wave oscillator 

  As is seen from Fig. 3, the self-exciting LF section of a multiplier contains internally the 
optimal conditions for HF wave excitation. Therefore, a natural way to realize a self-exciting 
multiplier is to embed the HF oscillator into the LF structure, or, to put it another way, to 
combine both oscillators inside a single cavity.  

This can be achieved in a cavity having eigenmodes with exactly divisible frequencies, so 
that both resonance conditions (1) and (2) will be fulfilled simultaneously (Fig. 4). In this 
scheme the maximum of the n-th current harmonic is placed in the region of HF resonance 
and more efficient coupling to the HF wave can be expected. One of the most convenient 
forms for such cavities is a piece of circular waveguide. In this case, rules (3) should be 
supplemented by the following requirement for the azimuthal indexes of the LF and HF 
modes:  

HFm nmLF                                （18） 

To mitigate the problems of mode selection and sensitivity to the spread in electron 
velocities, the preferred type of LF and HF resonances are those of the gyrotron. Thus, one 
has to find a pair of TEm,p and TE(nm),s modes with divisible cut-off frequencies, 

( ), ,nm s m pn  . In general, the cut-off frequencies of one circular waveguide mode are not 

integral multiples of the other. For instance, to double the frequency of the TE1,1 mode with an 
axis-encircling electron beam (Fig. 5a), one can’t find a near cut-off resonance with the TE2,s 
modes. A similar situation takes place for other radial indexes p of TE1,pmode.  
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Nevertheless, for certain multiplication factors there exists a series of modes of a circular 
waveguide with a pair of divisible azimuthal indexes and quasi-divisible frequencies. Actually, 
the cut-off frequencies of a circular waveguide with radius Rare proportional to either zeros of 
the corresponding Bessel functions (for TM modes), or their first derivatives, (for TE modes): 

, , , ,/ , /TM TE
m p m p m p m pcj R cj R                            （19） 

Here the azimuthal index, m, coincides with the order of the Bessel function and the radial 
index, p, coincides with the root number. Using McMahon’s expansions for large zeros 
( p>>m) of Bessel functions [28], gives 

2
,

2
,

( / 2 1/ 4) ( /

( / 2 3/ 4) ( /

m p

m p

)

)

j p m O m p

j p m O m p





   

    
                       （20） 

According to (20), for a circular waveguide the following asymptotic relation exists: 

, (5 ),(55 m p m pj j 3)                               （21） 

This means that for a frequency multiplying factor n=5  one can find “proper” pairs of TE 
modes, namely, TEm,p for the LF wave and TE(5m),(5p-3) for the HF wave. As an example of 
such a “proper” pair of modes, Fig. 5b shows the dispersion diagram for the case of the TE1,3 
and TE5,12 modes. 

In principle, an additional “proper” pair of modes may be also found, if one uses excitation 
of a TM wave at a multiplied frequency. Since 

, (3 ),(33 m p m pj j 2)                              （22） 

there is a possibility to provide a frequency multiplication factor of n=3 choosing the 
following pair of modes: the LF  mode at the fundamental cyclotron resonance and the 

HF  mode at the third harmonic. One should mention here that the excitation of a 

TM mode is possible and quite effective (in the case of relativistic electron energies) due to 
the interaction of particles with the axial component of the electric field of this mode [29]. 

,m pTE

(3 ),(3 2)m pTM 
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Fig. 4 Schematic of a single-cavity self-exciting gyro-multiplier, and typical axial distribution of harmonics of 
the electron current 

 

Fig. 5 Dispersion curves for frequency doubling (a) and frequency quintupling (b) in the case of a cavity with the 
circular cross-section. 

Table 1 illustrates the relative difference in waveguide eigenfrequencies of the “proper” 
pairs of modes in the cases of frequency multiplication factors n =5 and n =3, 

5 1, 5,(5 3)

3 1, 3,(3 2)

5 /

3 /

TE TE TE
p p

TE TM TE
p p
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

   

   

                           （23） 
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p  
5  3  

1  - 14.3 %  - 15.5 %  

2  - 1.3 %  - 1.4 %  

3  - 0.50 %  - 0.54 %  

4  - 0.27 %  - 0.29 %  

Table 1. Relative frequency discrepancies, δω5 and δω3, in the cases of co-generation of TEm,p TE(5m),(5p-3) 
modes and TEm,p -TM(3m),(3p-2) modes, respectively, versus the radial index of the fundamental-harmonic 
mode.  

  Minimization of the frequency discrepancy, δω, can be achieved by shortening the cavity. 
Actually, the “cold” eigenfrequency of a near-cutoff mode of a cavity differs from the cutoff 
frequency: 

2
, , , ( / )cutoff

m p q m p q c L                       （24） 

where  is the cutoff frequency determined by Eqs. (19), q is the axial index, and L is 

the cavity length. In the case of the “gyrotron-gyrotron” co-generation scheme, when both LF 
and HF waves are near-cutoff waves ( q =1 for both of the waves), they have the same axial 
wavenumbers,  h =π/ L , whereas their cutoff frequencies differs almost by n times: 

,
cutoff
m p

cutoff cutoff
HF LFn                             （25） 

In this case, the frequency discrepancy is determined as follows: 

2 2( ) ( 1)

2
cutoff cutoff

LF HF LF HF cutoff
HF

ch n
n n   




                   （26） 

Decreasing the cavity length leads to an increase of the axial wavenumber, h . This helps to 
compensate the negative (according to Table 1) discrepancy in the cutoff frequencies of the 
two modes, . It is important to note, that manufacturing errors may change 

the absolute values of the eigenfrequencies, but the relative separation between frequencies is 
bound to the cavity geometry and thus is more stable. 

0cutoff cutoff
LF HFn  

Finally, the exact minimization of the frequency discrepancy, nωLF −ωHF, can be achieved 
by using the effect of the electron beam on the eigenfrequency of the LF oscillator. Due to this 
fact, the “hot” LF eigenfrequency can be slightly tuned by changing either the operating 
magnetic field or the electron pitch factor.  

As an example of the “gyrotron-gyrotron” scheme of a two-wave gyro-oscillator with 
frequency multiplication, a moderately relativistic device with parameters of the Large-Orbit 
Gyrotron experiment [30] was numerically studied. Table 2 shows parameters and results of 
simulation for this “gyrotron-gyrotron” scheme with the operating cogenerated  and 1,3TE
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5,12TE  modes.   

Electron beam  

axis-encircling 250 kV / 3 A pitch factor – 1 
spread in transverse velocity – ∆β⊥/β⊥=60% 

Multiplication factor, n  5  

LF / HF modes  TE1,3,1 / TE5,12,1  

HF / LF wavelengths, λL / λH  2.5 mm / 0.5 mm  

Cavity radius, R  3.5 mm  

Magnetic field, B  6.0 T - 6.1 T  

Magnetic field band  0.3%  

LF efficiency  3%  

HF efficiency  0.1%  

Table 2 Parameters and results of simulation for the moderately-relativistic large-orbit “gyrotron-gyrotron” 
two-wave oscillator. 

The most serious problem arising while designing the gyrotron cavity for a multiplier 
scheme is the necessity to shorten the cavity in order to minimize the frequency discrepancy 
(Fig. 6). Such shortening leads to a decrease in the diffraction Q-factor of the open 
gyrotron-type cavity. Since the experimental setup has a rather stringent limitation of the 
beam current (3 A), this leads to the problem of satisfying the starting conditions for the LF 
wave. This problem can be solved by optimization of the shape of the cavity wall. With an 
extended tapered input cutoff narrowing of the cavity (Fig. 6 b), the same cavity provides 
different characteristic axial lengths for the LF and HF near-cutoff waves (Fig. 6 c). Due to 
this fact, it is possible to provide good synchronization of the “cold” frequencies of the two 
waves whilst retaining a reasonably long cavity. The “hot” eigenfrequency of the LF wave is 
shown schematically in the spectrum (Fig. 6 b) in green. It is slightly shifted from the “cold” 
LF-wave eigenfrequency, and it can be tuned by a change of the operating magnetic field, so 
that the exact frequency synchronization can be satisfied. 
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Fig.6 The “gyrotron-gyrotron” two-wave oscillator. Shape of the cavity and “cold” eigenmode spectra for the 
non-optimized (a) and optimized (b) cavities, and axial structures of the “cold” eigenmodes in the 
optimized case (c). 

  Since the magnetic field is responsible for the frequency synchronization in this system, the 
output power of the HF wave is very sensitive to its value. According to simulations (Figs. 7 
and 8), the output HF power in this system can be as high as 700 W; however, it is provided in 
a very narrow magnetic field band (0.3%), whereas the magnetic field band of the LF 
gyrotron amounts to a few percent. This fact is illustrated in Fig. 8, which shows LF-wave 
starting current and a region of high-power ( PHF,out >100 W ) generation of the HF wave on 
the (magnetic field) – (electron current) plane. One should notice that this problem is not a 
critical issue for permanent or cryo-magnets, but it may represent a certain difficulty in 
realization of pulsed systems. 

 

Fig.7 The “gyrotron-gyrotron” two-wave oscillator. Output power of the HF wave versus the magnetic field at 
various values of the electron current.  
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Fig.8 The “gyrotron-gyrotron” two-wave oscillator. Starting current of the LF wave (red) and region of 
high-power generation of the HF wave (blue) on the “(magnetic field) – (electron current)” plane.  

Another serious (but solvable) problem of the “gyrotron-gyrotron” scheme is the necessity 
of a special microwave system which should provide separation of the output radiation of two 
spectral components having the same group velocities. This problem is complicated by a great 
difference in the power of these two modes. In the example discussed above, there arises the 
problem of separating the HF wave with a power of ~102W  from the LF wave with a power 
of ~104W. 

3.2 “Gyrotron-TWT” two-wave oscillator 

As mentioned in Sect. II, in the case of a homogeneous magnetic field the co-generation of 
two waves is possible, if their frequencies, transverse wavenumbers and axial wavenumbers 
are divisible {see Eqs. (1-4)}. However, such a condition for the axial wavenumbers of the 
two co-generating waves is only approximate in character {Eq. (4)}. This fact could be used 
to provide co-generation of two modes of different types, namely, near-cutoff (gyrotron-type) 
LF wave and a traveling (TWT-type) HF wave. Actually, in the case of the gyrotron-type LF 
wave, resonance condition (1) can be re-written in the following form:  

ωLF =Ω+δ                              (27) 

Here δ is the mismatch of the resonance for this wave. According to the gyrotron theory [2], 
the characteristic value of this mismatch is determined by the length of the oscillator, 

δ =ω
LF 
−Ω ~2πv||

 
/ L                              (28) 

As for the TWT-type HF wave, it should be close to exact cyclotron resonance,  

ωHF = nωLF ≈ nΩ+ hHFv||                                 (29) 

 Thus, according to Eqs. (27) - (29), the axial wavenumber of the traveling HF wave can 
be large enough in the case of a short cavity,  
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hHF ~ nδ/ v|| ~ n2π/ L                         (30) 

One should take into account that the axial wavenumber of the near-cutoff mode is also 
determined by the cavity length, hLF ≈π/ L . Therefore, the ratio of group velocities of the two 
waves is estimated as follows: 

2
HF

gr HF LF
LF

gr LF HF

V h
V h




                       （31） 

Evidently, similar to the previous “gyrotron-gyrotron” case, the co-generation of a gyrotron 
LF wave and an “almost gyrotron” HF wave (i.e. a traveling wave with a small group velocity) 
can be provided, if the cut-off frequencies of the waves are almost divisible, cutoff cutoff: 

cutoff cutoff
HF LFn                          （32） 

However, unlike the case of n =5, the HF-wave cutoff frequency should be slightly lower,  

cutoff cutoff than the multiplied cutoff frequency of the LF-wave,  . This 

situation is realized in the “neighboring” case of n =6 (Fig. 9). 

cutoff cutoff
HF LFn 

 

Fig. 9 Dispersion diagram of “proper” pairs of TE modes for the case of multiplication factors n =5 and n =6. 
Oblique lines illustrate the electron cyclotron dispersion characteristic for the cases of long (solid lines) 
and short (dashed lines) operating cavity.  

The main peculiarity of the “gyrotron-TWT” scheme is significantly different group 
velocities of the two co-generating waves. This allows the use of an operating cavity with a 
small cutoff narrowing at its output. Such narrowing closes the near-cutoff LF wave inside the 
cavity, whereas the traveling HF wave is carried out from the cavity. Part of the power of this 
wave can be reflected from the output narrowing, so that a feedback for the HF oscillator 
would be provided.  
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The use of a cavity closed for the near-cutoff LF wave provides a number of advantages. 
First of all, the problem of mode separation is solved automatically. Secondly, the high 
Q-factor of the LF wave readily gives satisfaction of the starting conditions for this wave even 
in a short cavity, which helps to provide frequency synchronization of the two waves. In 
addition, according to Eq. (28), in the case of a short cavity the excitation of the LF oscillator 
occurs when the cyclotron frequency is significantly lower than the frequency of the 
near-cutoff LF wave. This fact helps to provide cyclotron resonance with the traveling HF 
wave (Fig.9).  

Fig.10 illustrates results of simulation of a moderately-relativistic large-orbit 
“gyrotron-TWT” two-wave oscillator with parameters analogous to the “gyrotron-gyrotron” 
variant (see Table 2). In this oscillator, the gyrotron LF TE1,4,1 wave is excited at the 
fundamental cyclotron resonance by a 250 kV/3A axis-encircling electron beam at a 
wavelength of 2.5 mm, whereas the HF TE6,20 wave is excited at the sixth cyclotron harmonic 
at a wavelength of 0.42 mm. The difference in the group velocities of these two waves (Vgr 

=0.08c for the LF wave and Vgr =0.15c  for the LF wave) was consistent with Eq. (31). Such 
a significant difference ensured the cavity is closed for the LF wave.   

It has been assumed in these simulations, that the HF-wave reflection from the output 
narrowing of the cavity is absent. In this situation, the output power of the HF wave is about 
100 W, which is significantly lower compared to the “gyrotron-gyrotron” variant (700 W). At 
the same time, the magnetic field band for the effective co-generation of the two modes 
amounts to a few percent, and is significantly broader than the “gyrotron-gyrotron” magnetic 
field band (0.3%). 

 

Fig.10 The “gyrotron-TWT” two-wave oscillator. Efficiency of the LF wave generation (red), HF-wave output 
power(blue), and the “hot” shift of the eigenfrequency (green) versus the magnetic field (normalized to 
its value correspondingto the electron cyclotron resonance with the LF wave). 

It is interesting, that a change of the magnetic field leads to a small change of the “hot” 
eigenfrequency of this system (the green curve in Fig. 10). This change amounts to δω/ ω~ 
10−3 , and is of the order of the frequency band of the LF oscillator determined by the Ohmic 
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quality of the near-cutoff LF wave δω/ ω~ Q 1
LF
  (since this mode is supposed to be closed 

inside the cavity, its diffraction quality is infinitely high). Thus, the “gyrotron-TWT” variant 
of the two-wave oscillator allows a narrowband range of frequency tuning.   

Certainly, since the group velocity of the HF wave is quite small, the narrowing at the 
cavity output will provide reflection of part of the power of this wave and, therefore, some 
feedback for the HF oscillator. According to simulations with a power reflection coefficient 
for this wave of R =20% , the output HF-wave power reaches 300 W, whereas in the case of R 
=50% it becomes as high as in the “gyrotron-gyrotron” scheme (650 W).  

At the same time, the increase of the Q-factor of the HF wave results in narrowing of the 
frequency band of the HF eigenmode, and, therefore, in narrowing the magnetic field tuning 
band for the effective HF-wave generation.  

4. Single-cavity inhomogeneous schemes  

As shown in the previous Sections, in the case of a uniform magnetic field, the properties 
of the eigenmodes of a circular waveguide allow the realization of either a 
“gyrotron-gyrotron” scheme of the two-wave oscillator with a frequency multiplication factor 
of n =5, or the “neighboring” case of the “gyrotron – TWT (almost gyrotron)” scheme with n 
=6. If one needs to realize co-generation of two waves with significantly different group 
velocities and with a different frequency multiplication factor, one should use magnetic field 
profiling. A possible variant of such a profiled two-wave oscillator is shown in Fig. 11. Its 
interaction region represents three sections differing from each other by the value of the 
magnetic field. Inside the first and the third sections, the magnetic field is close to resonance 
with the near-cutoff gyrotron-type LF wave. In the middle section, where the HF harmonic 
current, ρn , reaches its maximum, the magnetic field is close to resonance with a traveling HF 
wave, which can be either a forward propagating (TWTtype) or a backward-propagating 
(BWO-type). 

 

Fig. 11 Two-wave oscillator with profiled magnetic field. 

From the point of view of the LF oscillator, this scheme is analogous to a klystron with 
positive feedback. Actually, the first section operates similar to the modulator, whereas the 
third one is similar to the output resonator. The “drift region” of this “klystron” is used to 
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produce HF emission. 

It is important that the magnetic field profiling slightly disrupts the process of electron 
bunching. Actually the change of the magnetic field leads to conversion between the 
transverse and longitudinal components of the electron momentum. This causes a change in 
the parameters of electron-wave coupling and of inertial bunching and thus affects the 
bunching speed. As for the coupling parameter, it is proportional to the transverse electron 
momentum and grows with increasing magnetic field. To understand the behavior of the 
inertial bunching factor one should start from the non-asymptotic equation for electron phase 
for the LF wave: 

v||
LFd

dz

 
                           （33） 

Let us consider the case of a precise gyrotron-type resonance in the modulating section, 

01 1
ˆ /LF                                   （34） 

where  is the non-relativistic cyclotron frequency in the first section, and γ0 is 1 1
ˆ /eB mc 

the initial electron Lorentz-factor. In the case of the gyrotron-type electron-wave interaction, 
the axial momentum of the electrons, p|| =mγv|| , does not vary in the first section. Therefore, 
the modulation of the transverse electron momentum in the first section, p⊥, is connected with 
the modulation of the relativistic electron Lorentz-factor in the following way: 

2 2
0 0p p m c                              （35） 

In the case of a constant magnetic field, the axial momentum also remains constant, γv|| 

=const , and electron bunching in the drift region is described by the following equation: 

1 1
2
0 0

ˆ ˆ

v v
LFd

dz

 
 
 

 
 

                        （36） 

However, in the case of a profiled magnetic field, in the region of transition from the first 
section to the second, the transverse electron momentum changes according to the adiabatic 
invariant, p 2

 /B =const . One can assume that in the second section the interaction between the 

electrons an  the radiation is absent, as this wave is far from the resonance. This means that 
the total electron momentum is constant, so that the transition from the first section to the 
second one is described as follows: 

d

2 2 2 2
0 0 2 0

1

( ) ( ) ( )2 B
p p p p p p p

B
                       （37） 

Here p||2 is the non-modulated part of the axial electron momentum in the second section, 
and δp|| is the modulation of the axial momentum caused by the transformation of the 
modulation of the transverse momentum. According to (37), this modulation is determined as 
follows: 

 185



Terahertz Science and Technology,  ISSN 1941-7411                                 Vol.1, No 3, September 2008                

2 2
2 0

1 1

B B
p p p p m c

B B 0     
                   （38） 

where ΔB = B2 − B1. Taking into account this modulation in Eq. (33), instead of Eq. (36) 
one obtains the following equation describing the electron bunching in the drift region: 

2

1 1
2

2 0 0 2 1

ˆ ˆ
1

( ) / v v
LFd c

dz p p m B

 B 
 

                 

             （39） 

According to Eq. (15), a large change in magnetic field, 

2v /B cB
                     （40） 

can noticeably modify the process of electron bunching in the second section and is best 
avoided. In other words, similar to the “gyrotron-gyrotron” scheme, the frequency 
discrepancy here is an object of optimization.  

We have studied a moderately-relativistic large-orbit “gyrotron-TWT” two-wave oscillator 
with profiled magnetic field with parameters, which are similar to parameters of the uniform 
devices (“gyrotron-gyrotron” and “gyrotron-TWT”) considered in the previous section (Table 
3). In this “gyrotron-TWT” oscillator, the gyrotron LF TE1,4,1 wave is excited at the 
fundamental cyclotron resonance by a 250kV/3A axis-encircling electron beam at a 
wavelength of 2.5 mm, whereas the HF TE5,16 wave is excited at the fifth cyclotron harmonic 
at a wavelength of 0.5 mm. In contrast to the uniform “gyrotron-TWT” (Sect. III B), the 
traveling HF wave has quite a high group velocity ( Vgr ≈0.3c ). This leads to a stronger 
sensitivity to the velocity spread. At a moderate spread ( δv⊥ /v⊥=20% ), the output HF power 
of this device (~100W), as well as the magnetic field band (2%) are similar to the uniform 
“gyrotron-TWT” (Sect. III B). 

Electron beam  

cylindrical, axis-encircling  
250 kV / 3 A  

pitch factor ~ 1  
spread in perpendicular velocity  

– ∆β⊥/β⊥=20%  

Multiplication factor  5  
LF / HF modes  TE1,4,1 / TE5,16  

HF / LF wavelengths  2.5 mm / 0.5 mm  
Magnetic field band  2%  

LF efficiency  10%  
HF efficiency  0.015%  

Table 3. Parameters and results of simulation for the moderately-relativistic large-orbit “gyrotron-TWT” 
two-wave oscillator with profiled magnetic field.  

  Figure 12 illustrates the electron-wave interaction in the “gyrotron-TWT” two-wave 
oscillator with a profiled magnetic field. It is shown that the interaction with different waves 
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is split into different parts of the operating cavity. Actually, the HF-wave excitation occurs in 
the middle part of the interaction region, where the magnetic field is close to the value 
corresponding to the high-harmonic cyclotron resonance with this wave. The increase of the 
LF efficiency occurs in the output part of the cavity; fast oscillations of the LF efficiency in 
the middle part correspond to oscillation of the energy of the electron bunch in the field of a 
non-resonant wave. 

 

Fig. 12 The “gyrotron-TWT” two-wave oscillator with profiled magnetic field. Efficiency of the LF wave 
generation and electron-current harmonic at the LF-wave frequency (red curves), similar plots for the 
HF wave (blue curves), and the magnetic field profile (violet curve). 

In the example described the factor of frequency multiplication equals n =5. We have 
chosen such a value advisedly in order to simplify the comparison between this scheme and 
ones described in the previous Sections. As a matter of fact, the scheme with a profiled 
magnetic field allows any other multiplication factor, such as n =4 or n =3. The use of smaller 
factors may be attractive for achieving higher radiation efficiency at the expense of a higher 
magnetic field. 

5. Conclusion 

An attractive scheme of a self-exciting gyro-multiplier is a single-cavity two-wave 
oscillator, where the high-frequency, high-harmonic generator is embedded into the 
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low-frequency fundamental-harmonic resonator. In the case of a uniform magnetic field, it is 
possible to realize a limited number of variants, including the “gyrotron-gyrotron” multiplier 
(with multiplication factor n=5) and the “gyrotron-TWT” multiplier (n=6). Simulations 
demonstrate the possibility of gyro-oscillators in the THz frequency range with output powers 
of over 100 W and narrow-band frequency tuning at moderately-relativistic (250 keV) 
electron energies.  

The use of a special profile of the magnetic field can provide a fundamental-harmonic 
oscillator with a klystron-like electron-wave interaction. The middle part of this “klystron” 
can operate as a high-harmonic generator. In this scheme, any types of co-generating waves 
(standing, forward, backward) and any multiplication factors are possible. 
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