International Journal of Terahertz Science and Technology
  TST >> Vol.7, No.4, December 2014: PP. 172-180

(Invited paper) Terahertz silicon lasers based on intracenter impurity transitions

H.-W. Hübers 1, 2*, S. G. Pavlov 1 , R. Kh. Zhukavin 3, and V. N. Shastin 3
1 German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany
2 Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
3 Institute of Physics of Microstructures, Russian Academy of Science, 603950Nizhny Novgorod, Russia
*2 Email:

View Full Text: PDF

Abstract: The first silicon laser was reported in the year 2000. It is based on impurity transitions of the hydrogen-like phosphorus donor in monocrystalline silicon. Several lasers based on other group-V donors in silicon have been demonstrated since then. These lasers operate at low lattice temperatures under optical pumping by a mid-infrared laser and emit light at discrete wavelengths in the range from 250 to 50 µm (1.2 THz to 6.9 THz). Dipole-allowed optical transitions between particular excited states of group-V substitutional donors are utilized for donor-type terahertz (THz) silicon lasers. Population inversion is achieved due to specific electron-phonon interactions inside the impurity atom. This results in long-living and short-living excited states of the donor centers. The frequency of the laser can be tuned by applying an external magnetic field or by applying a compressive force to the laser crystal. Another type of the THz laser utilizes stimulated resonant Raman-type scattering of photons by a Raman-active intracenter electronic transition. By varying the pump laser frequency, the frequency of the Raman intracenter silicon laser can be continuously changed between at least 4.5 THz and 6.4 THz. Recently lasing from p-type boron-doped silicon has been obtained. In addition, fundamental aspects of the laser process provide new information about the peculiarities of electronic capture by shallow impurity centers in silicon, lifetimes of non-equilibrium carriers in excited impurity states, and electron-phonon interaction.

Keywords: Terahertz, Silicon, Laser, Donor, Impurity, Raman.

Received: 2014-12-15

Published: 2014-12-30

Acknowledgments: The author gratefully acknowledge the support with silicon samples from the Leibniz Institute of Crystal Growth (IKZ) in Berlin by N. V. Abrosimov and H. Riemann as well as the isotopically enriched silicon crystals provided due to cooperation of the IKZ and the Physikalisch Technische Bundesanstalt in Braunschweig (P. Becker) and VITCON Projectconsult GmbH in Jena (H.-J. Pohl). Strong technical support and valuable scientific discussions on the results have been obtained from the free electron laser facilities in the Netherlandss (FELIX, A. F. G. van der Meer and B. Redlich) and in Helmholtz Zentrum Dresden-Rossendorf (FELBE, S. Winnerl). Over years this research has been supported by the feelowships from the Alexander von Humboldt Foundation, the German Academic Exchange Service (DAAD) as well as by projects of the Deutsche Forschungsgemeinschaft and the Russian Foundation for Basic Research.

Cite this article:
H.-W. Hübers, S. G. Pavlov, R. Kh. Zhukavin, and V. N. Shastin. Terahertz silicon lasers based on intracenter impurity transitions[J]. International Journal of Terahertz Science and Technology, 2014, Vol.7, No.4: 172-180.  DOI:10.11906/TST.172-180.2014.12.16




Print | close

Copyright© 2008 Scinco Inc. All Rights Reserved
P.O.Box 6982, Williamsburg, VA 23188, USA var cnzz_protocol = (("https:" == document.location.protocol) ? "https://" : "http://");document.write(unescape("%3Cspan id='cnzz_stat_icon_2409046'%3E%3C/span%3E%3Cscript src='" + cnzz_protocol + "' type='text/javascript'%3E%3C/script%3E"));